Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5971, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472297

RESUMO

Recent biological surveys of ancient inselbergs in southern Malawi and northern Mozambique have led to the discovery and description of many species new to science, and overlapping centres of endemism across multiple taxa. Combining these endemic taxa with data on geology and climate, we propose the 'South East Africa Montane Archipelago' (SEAMA) as a distinct ecoregion of global biological importance. The ecoregion encompasses 30 granitic inselbergs reaching > 1000 m above sea level, hosting the largest (Mt Mabu) and smallest (Mt Lico) mid-elevation rainforests in southern Africa, as well as biologically unique montane grasslands. Endemic taxa include 127 plants, 45 vertebrates (amphibians, reptiles, birds, mammals) and 45 invertebrate species (butterflies, freshwater crabs), and two endemic genera of plants and reptiles. Existing dated phylogenies of endemic animal lineages suggests this endemism arose from divergence events coinciding with repeated isolation of these mountains from the pan-African forests, together with the mountains' great age and relative climatic stability. Since 2000, the SEAMA has lost 18% of its primary humid forest cover (up to 43% in some sites)-one of the highest deforestation rates in Africa. Urgently rectifying this situation, while addressing the resource needs of local communities, is a global priority for biodiversity conservation.


Assuntos
Borboletas , Animais , Biodiversidade , África Oriental , Répteis , Florestas , África do Sul , Filogenia , Mamíferos
2.
Sci Data ; 10(1): 327, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236921

RESUMO

The Checklist of the Vascular Plants of the Republic of Guinea (CVPRG) is a specimen-based, expert-validated knowledge product, which provides a concise synthesis and overview of current knowledge on 3901 vascular plant species documented from Guinea (Conakry), West Africa, including their accepted names and synonyms, as well as their distribution and status within Guinea (indigenous or introduced, endemic or not). The CVPRG is generated automatically from the Guinea Collections Database and the Guinea Names Backbone Database, both developed and maintained at the Royal Botanic Gardens, Kew, in collaboration with the staff of the National Herbarium of Guinea. A total of 3505 indigenous vascular plant species are reported of which 3328 are flowering plants (angiosperms); this represents a 26% increase in known indigenous angiosperms since the last floristic overview. Intended as a reference for scientists documenting the diversity and distribution of the Guinea flora, the CVPRG will also inform those seeking to safeguard the rich plant diversity of Guinea and the societal, ecological and economic benefits accruing from these biological resources.


Assuntos
Magnoliopsida , Traqueófitas , Guiné , Plantas
3.
Mol Phylogenet Evol ; 169: 107428, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35131417

RESUMO

Barleria is a genus of approximately 300 species of herbs, shrubs or, rarely, trees, that is broadly distributed across the Paleotropics. The genus is especially diverse in Tanzania, Angola, and Madagascar. A recent molecular study sampled 53 Barleria species and gathered data for five molecular markers (i.e., four chloroplast loci and the nuclear nrITS) to find support for the recognition of two subgenera previously circumscribed based on morphology, subg. Barleria and subg. Prionitis. That study further reconstructed four previously recognized sections (i.e., Fissimura, Prionitis, Somalia, Stellatohirta) as monophyletic, while three others (i.e., Barleria, Cavirostrata, Chrysothrix) were recovered as para- or polyphyletic. The present study aimed to reconstruct phylogenetic relationships within Barleria based on a broader sample of taxa and many more characters. We sampled 190 accessions representing 184 taxa, including varieties and subspecies. The dataset includes 167 of the ca. 300 species currently recognized or about 56% of total species diversity. We relied heavily on herbarium specimens to sample across the taxonomic breadth and geographic range of Barleria. Single nucleotide polymorphism data were generated using double-digest restriction-site associated DNA sequencing (ddRADseq). The maximum likelihood phylogeny corroborated the topology estimated from the chloroplast and nrITS data, but with greatly increased resolution and support for fine-scale relationships. A coalescent analysis failed to resolve distant evolutionary relationships across Barleria and between Barleria and outgroups, but recovered the same or similar topologies within each Barleria section. Importantly, the ddRADseq phylogeny recovered seven major lineages within subg. Barleria and resolved a polytomy that included B. cristata, the type species of the genus. The topology suggests at least four independent dispersal events to Madagascar followed by three subsequent radiations. Our results broadly inform our understanding of diversity and evolution in one of the largest genera of Acanthaceae, representing an important step towards a stable subgeneric classification for the genus.


Assuntos
Acanthaceae , Acanthaceae/genética , Sequência de Bases , Cloroplastos , Filogenia , Análise de Sequência de DNA
4.
Sci Rep ; 11(1): 15190, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312457

RESUMO

Beneficial insect communities on farms are influenced by site- and landscape-level factors, with pollinator and natural enemy populations often associated with semi-natural habitat remnants. They provide ecosystem services essential for all agroecosystems. For smallholders, natural pest regulation may be the only affordable and available option to manage pests. We evaluated the beneficial insect community on smallholder bean farms (Phaseolus vulgaris L.) and its relationship with the plant communities in field margins, including margin trees that are not associated with forest fragments. Using traps, botanical surveys and transect walks, we analysed the relationship between the floral diversity/composition of naturally regenerating field margins, and the beneficial insect abundance/diversity on smallholder farms, and the relationship with crop yield. More flower visits by potential pollinators and increased natural enemy abundance measures in fields with higher plant, and particularly tree, species richness, and these fields also saw improved crop yields. Many of the flower visitors to beans and potential natural enemy guilds also made use of non-crop plants, including pesticidal and medicinal plant species. Selective encouragement of plants delivering multiple benefits to farms can contribute to an ecological intensification approach. However, caution must be employed, as many plants in these systems are introduced species.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Ecossistema , Fazendas , Insetos/fisiologia , Árvores , Animais , Biodiversidade , Produção Agrícola/métodos , Flores , Florestas , Malaui , Phaseolus/crescimento & desenvolvimento , Polinização , Simbiose/fisiologia , Tanzânia
5.
Am J Bot ; 108(7): 1201-1216, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34180046

RESUMO

PREMISE: Both universal and family-specific targeted sequencing probe kits are becoming widely used for reconstruction of phylogenetic relationships in angiosperms. Within the pantropical Ochnaceae, we show that with careful data filtering, universal kits are equally as capable in resolving intergeneric relationships as custom probe kits. Furthermore, we show the strength in combining data from both kits to mitigate bias and provide a more robust result to resolve evolutionary relationships. METHODS: We sampled 23 Ochnaceae genera and used targeted sequencing with two probe kits, the universal Angiosperms353 kit and a family-specific kit. We used maximum likelihood inference with a concatenated matrix of loci and multispecies-coalescence approaches to infer relationships in the family. We explored phylogenetic informativeness and the impact of missing data on resolution and tree support. RESULTS: For the Angiosperms353 data set, the concatenation approach provided results more congruent with those of the Ochnaceae-specific data set. Filtering missing data was most impactful on the Angiosperms353 data set, with a relaxed threshold being the optimum scenario. The Ochnaceae-specific data set resolved consistent topologies using both inference methods, and no major improvements were obtained after data filtering. Merging of data obtained with the two kits resulted in a well-supported phylogenetic tree. CONCLUSIONS: The Angiosperms353 data set improved upon data filtering, and missing data played an important role in phylogenetic reconstruction. The Angiosperms353 data set resolved the phylogenetic backbone of Ochnaceae as equally well as the family specific data set. All analyses indicated that both Sauvagesia L. and Campylospermum Tiegh. as currently circumscribed are polyphyletic and require revised delimitation.


Assuntos
Magnoliopsida , Ochnaceae , Evolução Biológica , Magnoliopsida/genética , Filogenia , Análise de Sequência de DNA
6.
Trends Plant Sci ; 26(5): 433-441, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33579621

RESUMO

Unprecedented changes in the Earth's biota are prompting urgent efforts to describe and conserve plant diversity. For centuries, botanical monographs - comprehensive systematic treatments of a family or genus - have been the gold standard for disseminating scientific information to accelerate research. The lack of a monograph compounds the risk that undiscovered species become extinct before they can be studied and conserved. Progress towards estimating the Tree of Life and digital information resources now bring even the most ambitious monographs within reach. Here, we recommend best practices to complete monographs urgently, especially for tropical plant groups under imminent threat or with expected socioeconomic benefits. We also highlight the renewed relevance and potential impact of monographies for the understanding, sustainable use, and conservation of biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Plantas
7.
PeerJ ; 8: e10102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150065

RESUMO

BACKGROUND: Many crops are dependent on pollination by insects. Habitat management in agricultural landscapes can support pollinator services and even augment crop production. Common bean (Phaseolus vulgaris L.) is an important legume for the livelihoods of smallholder farmers in many low-income countries, particularly so in East Africa. While this crop is autogamous, it is frequently visited by pollinating insects that could improve yields. However, the value of pollination services to common beans (Kariasii) yield is not known. METHODS: We carried out pollinator-exclusion experiments to determine the contribution of insect pollinators to bean yields. We also carried out a fluorescent-dye experiment to evaluate the role of field margins as refuge for flower-visitors. RESULTS: Significantly higher yields, based on pods per plant and seeds per pod, were recorded from open-pollinated and hand-pollinated flowers compared to plants from which pollinators had been excluded indicating that flower visitors contribute significantly to bean yields. Similarly, open and hand-pollinated plants recorded the highest mean seed weight. Extrapolation of yield data to field scale indicated a potential increase per hectare from 681 kg in self-pollinated beans to 1,478 kg in open-pollinated beans indicating that flower visitors contributed significantly to crop yield of beans. Our marking study indicated that flower-visiting insects including bees, flies and lepidopterans moved from the field margin flowers into the bean crop. Overall, these results show that insect pollinators are important for optimising bean yields and an important food security consideration on smallholder farms. Field margin vegetation also provides habitat for flower-visiting insects that pollinate beans. Hence, non-crop habitats merit further research focusing on establishing which field margin species are most important and their capacity to support other ecosystem services such as natural pest regulation or even pests.

8.
Nature ; 584(7822): 579-583, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760001

RESUMO

New Guinea is the world's largest tropical island and has fascinated naturalists for centuries1,2. Home to some of the best-preserved ecosystems on the planet3 and to intact ecological gradients-from mangroves to tropical alpine grasslands-that are unmatched in the Asia-Pacific region4,5, it is a globally recognized centre of biological and cultural diversity6,7. So far, however, there has been no attempt to critically catalogue the entire vascular plant diversity of New Guinea. Here we present the first, to our knowledge, expert-verified checklist of the vascular plants of mainland New Guinea and surrounding islands. Our publicly available checklist includes 13,634 species (68% endemic), 1,742 genera and 264 families-suggesting that New Guinea is the most floristically diverse island in the world. Expert knowledge is essential for building checklists in the digital era: reliance on online taxonomic resources alone would have inflated species counts by 22%. Species discovery shows no sign of levelling off, and we discuss steps to accelerate botanical research in the 'Last Unknown'8.


Assuntos
Biodiversidade , Classificação/métodos , Ilhas , Plantas/classificação , Mapeamento Geográfico , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Internet , Nova Guiné , Especificidade da Espécie , Fatores de Tempo
9.
PhytoKeys ; 136: 45-96, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866738

RESUMO

An annotated checklist of the 271 strict-endemic taxa (235 species) and 387 near-endemic taxa (337 species) of vascular plants in Mozambique is provided. Together, these taxa constitute c. 9.3% of the total currently known flora of Mozambique and include five strict-endemic genera (Baptorhachis, Emicocarpus, Gyrodoma, Icuria and Micklethwaitia) and two near-endemic genera (Triceratella and Oligophyton). The mean year of first publication of these taxa is 1959, with a marked increase in description noted following the onset of the two major regional floristic programmes, the "Flora of Tropical East Africa" and "Flora Zambesiaca", and an associated increase in botanical collecting effort. New taxa from Mozambique continue to be described at a significant rate, with 20 novelties described in 2018. Important plant families for endemic and near-endemic taxa include Fabaceae, Rubiaceae and Euphorbiaceae s.s. There is a high congruence between species-rich plant families and endemism with the notable exceptions of the Poaceae, which is the second-most species rich plant family, but outside of the top ten families in terms of endemism, and the Euphorbiaceae, which is the seventh-most species rich plant family, but third in terms of endemism. A wide range of life-forms are represented in the endemic and near-endemic flora, with 49% being herbaceous or having herbaceous forms and 55% being woody or having woody forms. Manica Province is by far the richest locality for near-endemic taxa, highlighting the importance of the cross-border Chimanimani-Nyanga (Manica) Highlands shared with Zimbabwe. A total of 69% of taxa can be assigned to one of four cross-border Centres of Endemism: the Rovuma Centre, the Maputaland Centre sensu lato, and the two mountain blocks, Chimanimani-Nyanga and Mulanje-Namuli-Ribaue. Approximately 50% of taxa have been assessed for their extinction risk and, of these, just over half are globally threatened (57% for strict-endemics), with a further 10% (17% for strict-endemics) currently considered to be Data Deficient, highlighting the urgent need for targeted conservation of Mozambique's unique flora. This dataset will be a key resource for ongoing efforts to identify "Important Plant Areas - IPAs" in Mozambique, and to promote the conservation and sustainable management of these critical sites and species, thus enabling Mozambique to meet its commitments under the Convention on Biological Diversity (CBD).


ResumoApresenta-se a lista das plantas vasculares de Moçambique, que compreende 271 taxa endémicos (235 espécies) e 387 taxa quase-endémicos (337 espécies). Estes taxa constituem cerca de 9,3% da flora total actualmente conhecida em Moçambique e incluem cinco géneros estritamente endémicos (Baptorhachis, Emicocarpus, Gyrodoma, Icuria e Micklethwaitia) e dois géneros quase-endémicos (Triceratella e Oligophyton). O ano médio das primeiras publicações destes taxa é 1959. Um aumento significativo na descrição de espécies novas foi verificado, relacionado com o início de dois projectos regionais, a "Flora of Tropical East Africa" e a "Flora Zambesiaca", permitindo um esforço maior de colheitas botânicas. Novos taxa têm vindo a ser descritos a um ritmo significativo, com 20 novas espécies descritas em 2018 para a flora de Moçambique. As famílias Fabaceae, Rubiaceae e Euphorbiaceae, incluem importantes taxa endémicos e quase-endémicos. Existe uma estreita relação entre as famílias de plantas com elevado número de espécies e o grau de endemismo, excepção feita às Poaceae, que embora seja a segunda família mais rica em espécies não se posiciona no grupo das dez principais famílias em termos de endemismo. Por outro lado a família Euphorbiaceae, que é a sétima mais rica em espécies, posiciona-se em terceiro lugar quanto ao número de endemismo. A flora endémica apresenta diferentes formas de vida, sendo 49% das espécies herbáceas e 55% lenhosas. A Província de Manica é o local mais rico em taxa quase-endémicos, realçando assim a importância da área transfronteiriça Chimanimani-Nyanga (Manica) entre Moçambique e Zimbabwe. Refira-se ainda que 69% dos taxa encontra-se num dos quatro centros de endemismo transfronteiriços: o Centro do Rovuma, o Centro de Maputaland sensu lato e nas regiões montanhosas de Chimanimani-Nyanga e Mulanje-Namuli-Ribáuè. Cerca de 50% dos taxa foram avaliados quanto ao risco de extinção, estando mais da metade ameaçados globalmente (57% de endemismos) e 10% (17% de endemismos) foram incluídos na categoria Informação Insuficiente (DD), revelando que a maioria das plantas endémicas de Moçambique necessitam de conservação urgente. Este estudo fornece novos dados indispensáveis à identificação das "Áreas Importantes de Plantas ­ IPAs" em Moçambique, contribuindo ainda para implementar as estratégias de conservação anteriormente estabelecidas pela Convenção sobre a Diversidade Biológica (CBD).

10.
PhytoKeys ; 133: 115-132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31662617

RESUMO

Synsepalum chimanimani S.Rokni & I.Darbysh., sp. nov., a small tree endemic to the forests of the southern foothills of the Chimanimani Mountains of Mozambique and Zimbabwe, is described and illustrated. The differences in morphology and distribution between the new species and the related S. kaessneri and S. muelleri, with which it has been confused, are clarified. The new species is globally Endangered due to ongoing habitat loss within its restricted range. The botanical importance and conservation of the Chimanimani foothills is also discussed, and they are highlighted as a candidate Important Plant Area.

11.
PLoS One ; 9(7): e103403, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25061858

RESUMO

In many tropical regions the development of informed conservation strategies is hindered by a dearth of biodiversity information. Biological collections can help to overcome this problem, by providing baseline information to guide research and conservation efforts. This study focuses on the timber trees of Angola, combining herbarium (2670 records) and bibliographic data to identify the main timber species, document biogeographic patterns and identify conservation priorities. The study recognized 18 key species, most of which are threatened or near-threatened globally, or lack formal conservation assessments. Biogeographical analysis reveals three groups of species associated with the enclave of Cabinda and northwest Angola, which occur primarily in Guineo-Congolian rainforests, and evergreen forests and woodlands. The fourth group is widespread across the country, and is mostly associated with dry forests. There is little correspondence between the spatial pattern of species groups and the ecoregions adopted by WWF, suggesting that these may not provide an adequate basis for conservation planning for Angolan timber trees. Eight of the species evaluated should be given high conservation priority since they are of global conservation concern, they have very restricted distributions in Angola, their historical collection localities are largely outside protected areas and they may be under increasing logging pressure. High conservation priority was also attributed to another three species that have a large proportion of their global range concentrated in Angola and that occur in dry forests where deforestation rates are high. Our results suggest that timber tree species in Angola may be under increasing risk, thus calling for efforts to promote their conservation and sustainable exploitation. The study also highlights the importance of studying historic herbarium collections in poorly explored regions of the tropics, though new field surveys remain a priority to update historical information.


Assuntos
Bases de Dados Factuais , Espécies em Perigo de Extinção , Registros , Árvores/classificação , Angola , Biodiversidade , Filogeografia , Árvores/genética
12.
PLoS One ; 8(1): e55677, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383261

RESUMO

Gene flow between closely related species is a frequent phenomenon that is known to play important roles in organismal evolution. Less clear, however, is the importance of hybridization between distant relatives. We present molecular and morphological evidence that support origin of the plant genus Physacanthus via "wide hybridization" between members of two distantly related lineages in the large family Acanthaceae. These two lineages are well characterized by very different morphologies yet, remarkably, Physacanthus shares features of both. Chloroplast sequences from six loci indicate that all three species of Physacanthus contain haplotypes from both lineages, suggesting that heteroplasmy likely predated speciation in the genus. Although heteroplasmy is thought to be unstable and thus transient, multiple haplotypes have been maintained through time in Physacanthus. The most likely scenario to explain these data is that Physacanthus originated via an ancient hybridization event that involved phylogenetically distant parents. This wide hybridization has resulted in the establishment of an independently evolving clade of flowering plants.


Assuntos
Acanthaceae/genética , Evolução Molecular , Hibridização Genética , Acanthaceae/classificação , Fluxo Gênico , Genes de Cloroplastos , Variação Genética , Fenótipo , Filogenia , Pólen/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...